科研成果

当前位置: 首页 > 科研成果 > 学术论文 > 正文

2009年发表论文

发布日期:2024-07-22    作者:         点击:

[1] Rui Du, Baochang Shi*. Incompressible MRT lattice Boltzmann model with eight velocities in 2D space. International Journal of Modern Physics C, 2009, 20(07): 1023-1037.

[2] Zhaoli Guo*, Chuguang Zheng and Baochang Shi. Incompressible lattice Boltzmann model for porous flows with large pressure gradient. Progress in Computational Fluid Dynamics, an International Journal, 2009, 9(3-5): 225-230.

[3] Zhaoli Guo*, Haifeng Han, Baochang Shi and Chuguang Zheng. Theory of the lattice Boltzmann equation: lattice Boltzmann model for axisymmetric flows. Physical Review E, 2009, 79(4): 046708.

[4] Jianhua Lu, Zhaoli Guo, Zhenhua Chai and Baochang Shi*. Numerical study on the tortuosity of porous media via lattice Boltzmann method. Communications in Computational Physics, 2009, 6(2): 354.

[5] Jianhua Lu, Baochang Shi, Zhaoli Guo* and Zhenhua Chai. Numerical study on natural convection in a square enclosure containing a rectangular heated cylinder. Frontiers of Energy and Power Engineering in China, 2009, 3(4): 373-380.

[6] Zhenhua Chai, Nanzhong He, Zhaoli Guo and Baochang Shi*. Lattice Boltzmann model for high-order nonlinear partial differential equations. Physical Review E, 2018, 97(1): 013304.

[7] Baochang Shi*, Zhaoli Guo. Lattice Boltzmann model for nonlinear convection-diffusion equations. Physical Review E, 2009, 79(1): 016701.

[8] Baochang Shi*, Zhaoli Guo. Lattice Boltzmann model for the one-dimensional nonlinear Dirac equation. Physical Review E, 2009, 79(6): 066704.

[9] Shulin Wu, Baochang Shi and Chengming Huang*. Parareal-Richardson algorithm for solving nonlinear ODEs and PDEs. Communications in Computational Physics, 2009, 6(4): 883.

[10] Shulin Wu*, Baochang Shi and Chengming Huang. Relaxation Newton iteration for a class of algebraic nonlinear systems. International Journal of Nonlinear Science, 2009, 8(2): 243-256.

[11]郭照立,郑楚光,施保昌.微尺度流动的扩展二阶滑移边界条件.工程热物理学报, 2009 (8): 1383-1385.

[12]刘向华,施保昌.逆Walsh序p值Walsh变换的演化生成及快速算法.应用数学, 2001, 14(增): 49-52.

[13] Yehui Peng, Baochang Shi and Shengbao Yao. An SQP Algorithm without Penalty Function for Inequality Constrained Optimization Problems with Arbitrary Initial Point. Mathematica Applicata, 2002, 15(supplement): 125-129.

友情链接: 华中科技大学 华中科技大学数学与统计学院 华中科技大学数学与应用学科交叉创新研究院 工程建模与科学计算湖北省重点实验室 CSCS资源库

地址:中国·湖北省·武汉市珞喻路1037号 华中科技大学数学与统计学院 逸夫科 技楼南楼836 邮编:430074